Fermionic Mapping For Eigenvalue Correlation Functions Of (Weakly) Non-Hermitian Symplectic Ensemble

نویسنده

  • M. B. Hastings
چکیده

The eigenvalues of an arbitrary quaternionic matrix have a joint probability distribution function first derived by Ginibre. We show that there exists a mapping of this system onto a fermionic field theory and then use this mapping to integrate over the positions of the eigenvalues and obtain eigenvalue density as well as all higher correlation functions for both the strongly and weakly non-Hermitian cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complex Laguerre Symplectic Ensemble of Non-Hermitian Matrices

We solve the complex extension of the chiral Gaussian Symplectic Ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correl...

متن کامل

Eigenvalue Distribution In The Self-Dual Non-Hermitian Ensemble

We consider an ensemble of self-dual matrices with arbitrary complex entries. This ensemble is closely related to a previously defined ensemble of antisymmetric matrices with arbitrary complex entries. We study the two-level correlation functions numerically. Although no evidence of non-monotonicity is found in the real space correlation function, a definite shoulder is found. On the analytical...

متن کامل

Critical statistics for non-Hermitian matrices.

We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the ...

متن کامل

A note on quantum chaology and gamma approximations to eigenvalue spacings for infinite random matrices

Quantum counterparts of certain classical systems exhibit chaotic spectral statistics of their energy levels; eigenvalues of infinite random matrices model irregular spectra. Eigenvalue spacings for the Gaussian orthogonal ensemble (GOE) of infinite random real symmetric matrices admit a gamma distribution approximation, as do the hermitian unitary (GUE) and quaternionic symplectic (GSE) cases....

متن کامل

Eigenvalue Correlations in Ginibre's Non-hermitean Random Matrices at Β = 4

Correlation function of complex eigenvalues of N × N random matrices drawn from Ginibre's non-Hermitean ensemble of symplectic symmetry is given in terms of a quaternion determinant. Spectral properties of Gaussian ensembles are studied in detail in the regimes of weak and strong non-Hermiticity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999